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We prove that the solutions of an impulsive differential equation depend 
continuously on a small parameter under the assumption that the right-hand 
side of the equation and the impulse operators satisfy conditions of Lipschitz 
type. 

1. I N T R O D U C T I O N  

The dependence on a parameter of the solutions of impulsive differen- 
tial equations in a Banach space is investigated. A theorem is proved which 
generalizes some results of Daleckii and Krein (1974) even for the case of 
a differential equation without impulse effect. 

2. S T A T E M E N T  OF T H E  P R O B L E M  

Let X be an arbitrary Banach space with norm []. IIx = II" II. Consider 
the impulsive differential equation 

dx 
-~= f(~, x, e) (z C t.) (1) 

3 x l T = ,  = L ( x ( t . ) ,  e) (n = 1 . . . .  , p )  (2) 

0~<r~<T, 0~<e~<eo (T and eo are constants), where x( t )eX  (O<t<<.T), 
f ( t , x , e ) e X  (O<~t<~T, xeX,  O<~e<~eo), t .<t .+l  ( n = l  . . . .  , p - l ;  p is 
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the number of the points of impulse effect in the interval [0, T]), and 
In(x, ~ ) e X  ( x e X ,  O<~e<~eo). 

We shall say that conditions (H) are met if the following conditions 
hold: 

HI. Ilf(z, x2, ~) - f ( z ,  x l ,  e)l[ ~< c(z, ~) [Ix2 - Xl I[ 
(0~<z~< T; xl ,  X 2 ~ X ;  0 < / ;  ~ e 0 )  

H2. IIIg(x2, 8)--Ik(Xl, ~)11 ~<d~(~)Ilx2-xl II 
( k =  1 . . . . .  p; Xl, X2~X; O~e~C,O) 

e e) da = ~o f i e ,  x, O) 4o H3. l im~o~o  f (  , x, 
(O< ~ ~ T, x e X )  

H4. l im~o lk (x ,  e)=Ik(x ,  0) (k=  1 . . . . .  p; x E X )  

Let Y be an arbitrary Banach space. 
By C([0, T], Y) we denote the set of all functions x: [0, T] ~ Y which 

are continuous for t r t~ and have discontinuities of the first kind at the 
points tn, where they are continuous from the left. With respect to the 
norm tl x tl c -- Supo _<t ~ v II x(t)lt, C( [0, T], Y) is a Banach space. 

Lemma 1. Let the following conditions hold: 

1. Conditions H1 and H3 are met. 
2. y 2 c ( y , ~ ) d a < . M  (O<.e<.eo). 
3. x e c ( r0 ,  r ] ,  X). 

Then in C([0, T], X) the following equality is valid: 

lim f (e ,  x(a), e) de = f (a ,  x(a), O) de 
e ~ O  

( 0<~<r )  (3) 

Proof From H3 it follows that for Zl, z'2E [0, T] and x e X  the 
equality 

I ~ I~ ~ f (e ,  lim f (e ,  x, ~) de = x, O) da 
e ~ O  z 1 

is Valid; hence for arbitrarily 
(k=  1 , . . . , n )  we have 

lim f i e ,  xk, e) da = f (e ,  xk, 0) da 
e--+0 k =  1 k - I  =1 k - I  

Consider the step function 

~(z) =xk (Zk<~z<~Zk+l;k=l  . . . . .  n - - l )  

chosen 0 ~ < z l < . . . < % _ , < % = T ,  x k e X  

(4) 
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by means of which equality (4) takes the form 

lim ~ f(a, ~(a), e) da = I= f(a, ~(a), O) da (5) 
e - ~ O  u 0 uo 

Let {.~m(O')}~= 1 be a sequence of step functions tending uniformly on 
[0, T] to x(t). From H1 and condition 2 of Lemma 1 we obtain the 
inequalities 

f(a, x(a), ~) do - f(a, x(a), O) da 

~< Ilf(a, x(a), 5 ) - f ( a ,  ~m(a), 5)11 da 

+ If(G, ~(o-), e ) -  f(o-, ~m(~), 0)] do 

f2 + [If(a, Yore(a), O) - f (a ,  x(a), 0)11 da 

~< sup llx(a)-~m(a)ll c(a,e) da+ [f(a, 2m(a),e ) 
O~<cr~<T 

;o - f (a ,~m(a) ,O) lda  + sup tlx(~)-L~(~)ll c(~,0)d~ 

~<2M sup IIx(~r)--~m(~)ll 
O ~ a ~ T  

+ If(o-, ~m(~), 5)-f(~,  ~m(~,), 0)] 

The proof of Lemma 1 follows from inequalities (6). 

(6) 

. MAIN RESULTS 

Theorem 1. Let the following conditions hold: 

1. The function f ( t ,  x, e) (0 ~< t ~< T, x ~ X, 0 ~< e ~< 5o), is uniformly 
bounded on each ball B c X and is piecewise continuous with 
respect to t. 

2. Conditions (H) hold. 
3. The impulsive equation (1), (2) has for e = 0  a solution x(o-,0) 

( o < ~ <  T). 
4. ~c(a,e)da<~M, I-I pk=m [l +dk(5)]<.M (M is a constant). 
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Then for any e e [ 0 ,  e0] equation (1), (2) has a unique solution 
x(a, e)e C([0, T], X) for which 

x(0, ~) = x(0, 0) = Xo 

Moreover, for any q > 0 there exists el s (0, to) such that for 0 < e < el the 
following estimate is valid: 

IIx(~, ~) -x(T,  0)ll < ~ (0~<z~< T) 

Proof It is immediately verified that the impulsive equation (1), (2) 
is equivalent to the nonlinear equation 

J2 x(z, ~) = Xo + f(s, x(s, ~), e) ds + ~ Ik(x(t~, ~), e) (7) 
O<~tk<z 

That is why in order to prove the theorem it suffices to show that equation 
(7) for sufficiently small e has a solution x(z, e) which, as e ~ 0, tends with 
respect to the norm of the space C([-0, T], X) to the solution x(a, 0) of this 
equation for e = 0. 

Consider the auxiliary operator Q acting in the space C([0, T], R) 
and defined by the formula 

f2 Q(e) z(~) = c(s, e) z(s) ds+ ~ dk(e) z(t~) (8) 
0 <: /k < :z  

For arbitrary 2~C,  2 r  and for any function f ( a ) ~ C ( [ 0 ,  T], ~) the 
equation 

2 z ( z ) -  Q(e) z(z)= f(z) (9) 

has a unique solution z(z)~C([0 ,  T], ~) which can be constructed by 
Volterra's method of successive approximations consecutively on each of 
the intervals [tj, t j+l]  ( j =  1 . . . .  , p -  1). 

The solvability of equation (9) for 2 r  in C([0, T], R) means that 
the spectral radius of the operator Q(~) in C([0, T], ~) equals zero. That 
is why (Krasnosel'skii et al., 1972) in the space C([0, T], ~) there exists a 
norm equivalent to the initial one. Moreover, the inequality 

IlQ(e)ll, ~<q (10) 

is valid, where q ~ (0, 1) is a given number and II" II, is the operator norm 
corresponding to the new norm in C([O, T], ~). 

Set 

A(~, x)(~/= Xo + f(s, x(s), ~) ds + ~ I~(x(t~), ~) 
O<~tk<Z 
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Obviously we have 

IlA(e, xl)(z) - A(e, x2)(r)ll 

<~ tlf(s, xl(s), ~ ) -  f(s, XR(S), e)ll ds 

+ E ]llk(Xl(tk), e)--Ik(x2(tk), e)ll 
0 < t k < ' r  

;2 <~ c(s, ~) Ilxl(s)-x2(s)ll ds 

+ E clk(~) Ilx,(t~)-x2(tk)tl 
O< tk<~" 

= Q(e) IIx,(~)- x2(v)ll (11) 
From (10) and (11) it follows that 

I[ [IA(~,xl) (z)-A(e,  x2)(z)][ I[,~<ql[ ][x~(r)-x2(v)H I[, (12) 

From (12) it follows that with respect to the norm II. U** = II [1" HXI[, 
of the space C([0, T], X) the operator A(e, x) satisfies the Lipschitz 
condition with a constant q < 1. 

From Lemma 1 it follows that 

lim llx(~, 0 ) - A ( e ,  x(~, 0))11 = 0  
e ~ 0  

hence the operator A(e, x) satisfies in the space C([0, T], X) with norm 
II" II ** the conditions of tbe Banach-Caccioppoli contracting mapping prin- 
ciple. Hence for small values of e the operator A(e, x) has in this space a 
unique fixed point which, as e--, 0 in the norm II" II **, and therefore in the 
initial norm as well, tends to x(z, 0). 

Theorem 1 is proved. �9 

As an application of Theorem 1, we shall consider the particular case 
when the impulsive equation has the form 

dx / z  ) 
~ z = f  ~ ,  x (z r t,;  n = 1 . . . .  , p) (13) 

x( t+)- -x ( t , )  = I,(x(t,), e) (n = 1 , . . . ,  p) (14) 

We shall say that conditions (A) are met if the followingconditions 
hold: 

A1. The function f ( r ,  x) (0 ~< r ~< T, x e X) is uniformly bounded on 
each ball B c X and is piecewise continuous with respect to r. 

A2. /if(r, x 2 ) -  f(z,  x~)[[ <~ c IIx2- x,  [I (O <~ z <~ T) 
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A3. For  any fixed x ~ X there exists the temporal mean 

1 

fo f o ( x ) - -  l i m  -- f ( t ,  x)  dt 

A4. There exist the limits 

Ik(x) = lim I~(x, e) (k = 1 . . . . .  p)  

Consider the impulse equation 

dx 
= f0(x) (z :~ tn) (15) 

x ( t + ) - x ( t , ) = I ~ ( x ( t , ) )  ( n =  1 . . . .  , p) (16) 

Corollary 1. Let conditions (A) hold and let equation (15), (16) have 
a solution Xo(t) which is defined on [-0, T]. 

Then for any q > 0  equation (13), (14) for sufficiently small e has a 
solution x(t,  e) which is defined on [0, T] and for which the following 
inequality is valid: 

IJx(t, ~) - Xo(te)ll < 

Remark 1. The assertion of Corollary 1 can be considered as an 
analog of one of the fundamental theorems of the Bogolyubov-Krylov 
averaging principle (Daleckii and Krein, 1974). 

Remark 2. Theorem 1 and Corollary 1 can be easily reformulated for 
the case when the functions f and Ik are defined only on some closed ball 
of the space X. 
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